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1. INTRODUCTION

The numerical method used in solving the kinetic collection equation (KCE) considerably
influences the accuracy of numerical simulations (e.g., cloud and precipitation development,
coagulation of aerosol particles, etc.). In a former publication [6] (hereafter referred to
as TRL) it was shown that the numerical solution obtained for the KCE by the spectral
multi-moment method (SMMM) with a very high spectral resolution (144 spectral bins)
approaches an exact solution of the KCE. It was suggested that this solution could be used
as a reference for evaluating the accuracy of other numerical methods used for solving the
KCE. Although the method is very useful as a reference solution to evaluate the performance
of different numerical methods, it has the disadvantage that it requires a large number of
spectral bins (144), making it impractical for use in models that include other dynamical or
microphysical processes.

The existence of a reference solution stimulated the development of a relatively accurate
and economical numerical method of solving the KCE. In the present work some modifica-
tions in the formulation of the SMMM are presented to permit the calculation of accurate
results while maintaining a small number of bins, thus making the method more efficient.
The new method is applied to 36 spectral bins and the results are compared with those
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obtained with the original algorithm using 36 and 72 bins and with the “reference” solution
obtained with 144 bins.

2. METHOD DESCRIPTION

In TRL a detailed descripition of the solution of the KCE (Smoluchowski’s equation) us-
ing the SMMM was presented. In this method the first two moments of the mass distribution
function are solved at each spectral bin. The new algorithm differs from the original one
by the use of (a) a different approach to formulating the approximation of the distribution
function in the spectral bins and (b) a more accurate relationship between spectral moments
in a bin.

(a) Equation (3) in TRL was used for approximating moments of the distribution function
of the typemJ fk(m, t) (for J = 0, 1, 2) when integrals over incomplete bins appeared. That
equation is replaced by

mJ fk(m, t) = mJ
k
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In TRL the approximations were always based only on the first two moments (namely,
J = 0, 1) and the functions9J,k(t) and8J,k(t) were the same for anyJ. In contrast, in
the present new algorithm the two moments used in the approximation are not always the
same but the selection depends on the moment one wants to evaluate; the subscriptJ in
9 and8 represents the moment that is being approximated. Following this approach, the
approximation offk(m, t) is done using the momentsJ = 0 and 1/2, m fk(m, t) uses the
momentsJ = 1/2 and 1 andm2 fk(m, t) the momentsJ = 1 and 2.
9J,k(t) and8J,k(t) are found to be,
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for J = 1
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and

for J = 2
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whereNk(t), Mk(t), andSk(t) represent the moments 0, 1, and 1/2, respectively.
The formulation of the approximation in Eq. (1) is independent of the kernel of interaction

or the physical problem. The approximation must fulfill three physical requirements: (a)
the function must be positive within the bin interval, (b) the total mass of the distribution
must be conserved (momentJ = 1), and (c) a balance between the mass concentration and
the number concentration (momentJ = 0) in each bin should be maintained; namely, the
average mass should remain between the bin boundaries.
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(b) In [4] and in TRL a nondimensional parameterξ that relates three neighboring
moments was introduced in order to close the equations (Eq. (6) in TRL). The range of
variation of ξ is between 1 and 17/16, namely 6.25%. Therefore, in the calculation of
the higher momentsξ introduces an inaccuracy that varies between 6.25% for the second
moment (Zk(t)) and 44% for the fourth moment (M (4)

k (t)).

In order to reduce these inaccuracies, higher moments are calculated using a modified
expression forξ ,

M J
k (t) = ξJ,p

[
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where the nondimensional parameterξ is also determined by the desired moment.
The expressions for̄ξ for J = 1/2, 2, 3, 4 andp = 2 can be formulated as
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These expressions significantly reduce the inaccuracies inξ . For example, for the fourth
moment the inaccuracy is now only 5.2%, compared to 44% using the former formulation.

3. RESULTS

Numerical simulations of cloud drop growth by collection were conducted for three dif-
ferent kernels: Golovin [1], for which an analytic solution exists, and the hydrodynamical
kernel with collection efficiencies by Hall [2] and Long [3]. The initial cloud drop mass
distribution function was represented by an exponential function with a total number con-
centration of 300 particles cm−3 and a total mass of 1, 2, and 3 g m−3. In all cases the
minimum radiusr1 was 1.5625µm and the maximumrmax was 6400µm. Simulations with
the new algorithm were conducted forp = 2 (36 bins). In all numerical experiments, total
mass was conserved.

Results for Golovin’s kernel with a total mass of 1 g m−3 show that up to 0.65 mm the
numerical results obtained with the new algorithm are similar to the analytical solution. For
larger diameters the new results are still better than those obtained with 108 bins and very
close to those obtained with 144 bins. Numerical simulations were also conducted for two
hydrodynamical kernels for which no analytical solutions exist. The new formulation was
evaluated for Long’s and Hall’s kernels for a total mass concentration of 1, 2, and 3 g m−3.
As an example, results obtained for Long’s and Hall’s kernels for 2 g m−3 after 10 min
of simulation are shown in Figs. 1a and 1b, respectively. In all these cases, the results are
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FIG. 1. Mass concentration distribution for (a) Long’s and (b) Hall’s hydrodynamical kernels after 10 min of
simulation. The total mass concentration is 2 g m−3.

compared with those obtained with 144 bins, considered as “reference.” For both kernels
the numerical results with the new algorithm are significantly closer to the reference than
the original one. The results are even better than those obtained with 108 bins.

In order to quantitatively evaluate the accuracy of the results obtained with the different
formulations the mass concentration accumulated in 14 bins (containing 99.9% of the total
mass) was evaluated. The 14 bins correspond to those defined by the 36 bins division. The
evaluation consisted of calculating the average and standard deviation of the ratios between
the mass at one of the 14 bins from one of the formulations and the mass predicted by the
“reference” solution. Namely,

1

14

k∗+14∑
k= k∗

M (#)
k

M (144)
k

, (7)

whereM (#)
k represents the mass at bink from one of the formulations (36 bins new, 72,

or 108). The evaluation was conducted for the numerical experiment using Long’s kernel,
a total mass concentration of 2 g m−3, and after 20 min of simulation. The results thus
calculated show that the new formulation with 36 bins differed from the reference solution
(144 bins) by 4.5% with a standard deviation of 3.2%. The new formulation was even
more accurate than the 108 bins model which differed from the reference solution by
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10.8% on the average with a standard deviation of 8.3%. According to these results one
can claim that the new formulation performs similarly to the 108 bins model but required
significantly less computation time, by a factor of 25. When compared to the 72 bins case
the new method is much more accurate and requires about five times less computation
time.

4. CONCLUSIONS

A new formulation of the approximation of the distribution function used in the spectral
multi-moments method was developed and implemented in the numerical solution of the
kinetic collection equation. In the new approximation there is a correspondence between
the moment one wants to evaluate and the moments used in the approximation. This new
method provides an accurate and efficient numerical solution of the KCE, appropriate for
use in dynamical cloud models. The results show a significant improvement in the accuracy
of the calculations while maintaining a low number of bins and high computation efficiency,
independent of the initial distribution and kernel used. Compared to the original SMMM
the computation time in the present method can be reduced by more than one order of
magnitude while maintaining similar accuracy.
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